A nomogram based on PI-RADS v2.1 and clinical indicators for predicting clinically significant prostate cancer in the transition zone.

2021 
Background This study attempted to develop a nomogram for predicting clinically significant prostate cancer (cs-PCa) in the transition zone (TZ) with the Prostate Imaging Reporting and Data System version 2.1 (PI-RADS v2.1) score based on biparametric magnetic resonance imaging (bp-MRI) and clinical indicators. Methods We retrospectively reviewed 383 patients with suspicious prostate lesions in the TZ as a training cohort and 128 patients as the validation cohort from January 2015 to March 2020. Multivariable logistic regression analysis was performed to determine independent predictors for building a nomogram, and the performance of the nomogram was assessed by the area under the receiver operating characteristic curve (AUC), the calibration curve and decision curve. Results The PI-RADS v2.1 score and prostate-specific antigen density (PSAD) were independent predictors of TZ cs-PCa. The prediction model had a significantly higher AUC (0.936) than the individual predictors (0.914 for PI-RADS v2.1 score, P=0.045, 0.842 for PSAD, P<0.001). The nomogram showed good discrimination (AUC of 0.936 in the training cohort and 0.963 in the validation cohort) and favorable calibration. When the PI-RADS v2.1 score was combined with PSAD, the diagnostic sensitivity and specificity were 80.7% and 93.8%, respectively, which were better than those of the PI-RADS v2.1 score (sensitivity, 74.2%; specificity, 92.5%) and PSAD (sensitivity, 66.1%; specificity, 88.2%). Conclusions The newly constructed nomogram exhibits satisfactory predictive accuracy and consistency for TZ cs-PCa. PI-RADS v2.1 based on bp-MRI is a strong predictor in the detection of TZ cs-PCa. Adding PSAD to PI-RADS v2.1 could improve its diagnostic performance, thereby avoiding unnecessary biopsies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    1
    Citations
    NaN
    KQI
    []