Space-time finite element discretization of parabolic optimal control problems with energy regularization

2020 
We analyze space-time finite element methods for the numerical solution of distributed parabolic optimal control problems with energy regularization in the Bochner space $L^2(0,T;H^{-1}(\Omega))$. By duality, the related norm can be evaluated by means of the solution of an elliptic quasi-stationary boundary value problem. When eliminating the control, we end up with the reduced optimality system that is nothing but the variational formulation of the coupled forward-backward primal and adjoint equations. Using Babu\v{s}ka's theorem, we prove unique solvability in the continuous case. Furthermore, we establish the discrete inf-sup condition for any conforming space-time finite element discretization yielding quasi-optimal discretization error estimates. Various numerical examples confirm the theoretical findings. We emphasize that the energy regularization results in a more localized control with sharper contours for discontinuous target functions, which is demonstrated by a comparison with an $L^2$ regularization and with a sparse optimal control approach.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []