Vacuum production of OTFTs by vapour jet deposition of dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) on a lauryl acrylate functionalised dielectric surface

2016 
Abstract Roll-to-roll (R2R) production of organic transistors and circuits require patterned deposition of organic layers at high deposition rate. Here we demonstrate a vapour-jet process for the rapid deposition of the organic semiconductor dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT). The deposition rate achieved, equivalent to ∼200 nm/s onto a stationary substrate, was several orders of magnitude faster than ordinary thermal evaporation. Nevertheless, transistor yield was 100% with an average mobility of 0.4 cm 2 /V in a single pass deposition onto a substrate moving at 0.15 m/min. We also demonstrate a vacuum, high rate R2R-compatible process for surface-functionalising a gate dielectric layer with lauryl acrylate which enabled an all-vacuum route to the fabrication of a five-stage ring oscillator.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    3
    Citations
    NaN
    KQI
    []