Real-time optically processed target recognition system based on arbitrary moire contours

1994 
Experiments using Liquid Crystal Televisions (LCTVs) as spatial light modulators for optical correlators, and optical input devices, have been reported upon widely. Moreover, applications of these devices for target recognition and automatic inspection systems are well documented. These systems often require the implementation of computer pre- and post- processing for image filtering and target recognition which handicaps real-time optical processing applications. It is possible to construct custom reference gratings that form a desired moire pattern when mixed with images of structurally illuminated targets. The moire patterns can be in any form, from equal depth contours, to error maps, to any arbitrary pattern desired. We have demonstrated video methods to generate such error maps in real-time. Furthermore, we have removed restrictions on the shape of the output moire contours, thus, developing a real-time automated inspection system based on the optical processing of arbitrary moire contours. We chose the moire pattern to be in the form of a Fresnel zone plate which is sent to an LCTV. Illumination of this zone plate with parallel coherent light results in a diffracted beam which produces a focused line on a detector. The result is a mixed video- optical processing system that could be used for real-time quality level sorting or other automated inspection requirements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    6
    Citations
    NaN
    KQI
    []