Unraveling the Carrier Dynamics of BiVO4: A Femtosecond to Microsecond Transient Absorption Study

2014 
Bismuth vanadate (BiVO4) is a promising semiconductor material for photoelectrochemical water splitting showing good visible light absorption and a high photochemical stability. To improve the performance of BiVO4, it is of key importance to understand its photophysics upon light absorption. Here we study the carrier dynamics of BiVO4 prepared by the spray pyrolysis method using broadband transient absorption spectroscopy (TAS), in thin films as well as in a photoelectrochemical (PEC) cell under water-splitting conditions. The use of a dual-laser setup consisting of electronically synchronized Ti:sapphire amplifiers enable us to measure the femtosecond to microsecond time scales in a single experiment. On the basis of this data, we propose a model of carrier dynamics that includes relaxation and trapping rates for electrons and holes. Hole trapping occurs in multiple phases, with the majority of the photogenerated holes being trapped with a time constant of 5 ps and a small fraction of this hole trapping ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    111
    Citations
    NaN
    KQI
    []