Colibrimycins, novel halogenated hybrid PKS-NRPS compounds produced by Streptomyces sp. CS147.

2021 
The improvement on genome sequencing techniques has brought to light the biosynthetic potential of actinomycetes due to the high number of gene clusters they present compared to the number of known compounds. Genome mining is a recent strategy in the search for novel bioactive compounds, which involves the analysis of sequenced genomes to identify uncharacterized natural product biosynthetic gene clusters, many of which are cryptic or silent under laboratory conditions, and to develop experimental approaches to identify their products. Owing to the importance of halogenation in terms of structural diversity, bioavailability and bioactivity, searching for new halogenated bioactive compounds has become an interesting issue in the field of natural product discovery. Following this purpose, a screening for halogenase coding genes was performed on twelve Streptomyces strains isolated from fungus growing ants of the Attini tribe. Using the bioinformatics tools antiSMASH and BLAST, six halogenase coding genes were identified. Some of these genes were located within biosynthetic gene clusters (BGCs), which were studied by construction of several mutants for the identification of the putative halogenated compounds produced. The comparison of the metabolite production profile of wild type strains and their corresponding mutants by UPLC-UV and HPLC-MS allowed us the identification of a novel family of halogenated compounds in Streptomyces sp. CS147, designated as colibrimycins. Importance Genome mining has proven its usefulness in the search for novel bioactive compounds produced by microorganisms, and halogenases comprise an interesting starting point. In this work, we have identified a new halogenase coding gene, which led to the discovery of novel lipopetide NRPS/PKS-derived natural products, the colibrimycins, produced by Streptomyces sp. CS147, isolated from Attini ant niche. Some colibrimycins display an unusual α-ketoamide moiety in the peptide structure. Although its biosynthetic origin remains unknown, its presence might be related with a hypothetical inhibition of virus proteases and, together with the presence of the halogenase, it represents a feature to be incorporated in the arsenal of structural modifications available for combinatorial biosynthesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []