EMG synchrony to assess impaired corticomotor control of locomotion after stroke

2017 
Abstract Adapting one’s gait pattern requires a contribution from cortical motor commands. Evidence suggests that frequency-based analysis of electromyography (EMG) can be used to detect this cortical contribution. Specifically, increased EMG synchrony between synergistic muscles in the Piper frequency band has been linked to heightened corticomotor contribution to EMG. Stroke-related damage to cerebral motor pathways would be expected to diminish EMG Piper synchrony. The objective of this study is therefore to test the hypothesis that EMG Piper synchrony is diminished in the paretic leg relative to nonparetic and control legs, particularly during a long-step task of walking adaptability. Twenty adults with post-stroke hemiparesis and seventeen healthy controls participated in this study. EMG Piper synchrony increased more for the control legs compare to the paretic legs when taking a non-paretic long step (5.02 ± 3.22% versus 0.86 ± 2.62%), p
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    6
    Citations
    NaN
    KQI
    []