Chromosomal Analysis: Clinical Applicability to Brain Cancers

2013 
Cytogenetics is the branch of genetics that studies the cell activity focusing mainly on the chromosome structure, organization and function, isolated or as the whole karyotype, in order to understand aspects of cell biology, evolution or implicated diseases. The behavior of DNA and genes is greatly constrained by the fact that they are incorporated into chromosomes. The DNA is associated with proteins that control and catalyze the processes of transcription and replication. Gene expression is controlled by modifications in histones and by chromatin remodeling complexes. It can also be influenced by the position of the gene in the chromosome. Hence, errors in chromosome behavior are an important cause of ill-health. The presence of chromosomal abnormalities is usual in cancer, and specific chromosome abnormality may often be one of the first events in the development of cancer [1]. The importance of cytogenetic analysis in oncology is demonstrated by the number of researches made on this area since the discovery of the Philadelphia chromosome, a 9/22 translocation, which is seen in chronic myelogenous leukemia (CML) patients [2]. The focus of these studies is the relation between specific chromosome alterations to prognosis, drug resistance and diagnosis for some tumors entities. Moreover, DNA repair problems and others genomic stability pathways defects may lead to genome-wide genetic instability, which can drive further cancer progression [3]. Although chromosome rearrangements are mainly used as markers in hematologic cancers, these alterations have been increasingly studied in solid tumors (90% of all human malignan‐ cies), showing that chromosomal numerical/structural aberrations are common in this kind of neoplasia.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    129
    References
    0
    Citations
    NaN
    KQI
    []