Anti-Collapse Drilling Fluids for the Cretaceous Scientific Drilling in Songliao Basin, China: A Case Study

2012 
CCSD-SK1 well was the first Cretaceous scientific drilling well in the world, locating in Songliao basin, Northeast China. It included main well (also called north well) and south well. This paper introduced the anti-collapse drilling fluid technology in main well where the desired continuous coring section was from 164.77 m to 1792.00 m. Continuous technical barriers challenged the intelligence of drilling engineers of this project. First, preserving the wellbore stability was the most critical aspect of continuous core drilling. From top to bottom, the unconsolidated sandstone in the Quaternary super stratum, the water sensitive shale in the Sifangtai group and upper stratum of the Nenjiang group, and the brittle shale of under stratum of the Nenjiang group increased the difficulty of anti-collapse drilling fluid technology. Water invasion into the shale formation often weakens the wellbore and causes problems such as wellbore collapse, shale destabilization and stuck pipe. Fluids should be designed to mitigate these shale problems. Secondly, the openhole strategy imposed the difficulty of maintaining wellbore stability in the second open process (from 245.00 m to the bottom). Finally, the total expense of the well was only one fifth of south well, which was drilled by an oilfield drilling contractor. To overcome these technical challenges, not only different drilling fluid systems such as PAM drilling fluid, DFD-LG-CMC drilling fluid and DFD-NH4HPAN-SAKH drilling fluid were adopted separately, but also technology of feasible viscosity and managed pressure drilling were used. A total of 395 trips had been run in this Cretaceous scientific drilling well and no accidents even dangerous cases occurred. The experience of CCSD-SK1 (main well) explored a successful way of employing economic drilling fluid to preceding similar scientific drilling projects in similar shale formations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    0
    Citations
    NaN
    KQI
    []