Magnetically aligned straight depolarization canals and the rolling Hough transform

2018 
Aims. We aim to characterize the properties of the straight depolarization canals detected in the Low Frequency Array (LOFAR) polarimetric observations of a field centered on the extragalactic source 3C 196. We also compare the canal orientations with magnetically aligned HI filaments and the magnetic field probed by polarized dust emission. Methods. We used the rolling Hough transform (RHT) to identify and characterize the orientation of the straight depolarization canals in radio polarimetric data and the filaments in HI data. Results. The majority of the straight depolarization canals and the Hi filaments are inclined by ~10° with respect to the Galactic plane and are aligned with the plane-of-sky magnetic field orientation probed by the Planck dust polarization data. The other distinct orientation, of −65° with respect to the Galactic plane, is associated with the orientation of a bar-like structure observed in the 3C 196 field at 350 MHz. Conclusions. An alignment between three distinct tracers of the (local) interstellar medium (ISM) suggests that an ordered magnetic field plays a crucial role in confining different ISM phases. The majority of the straight depolarization canals are a result of a projection of the complicated 3D distribution of the ISM. The RHT analysis is a robust method for identifying and characterizing the straight depolarization canals observed in radio-polarimetric data.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    21
    Citations
    NaN
    KQI
    []