Effect of Chemical Microenvironment in Spirothiopyran Monolayer Direct-Write Photoresists

2019 
We study the effect of the microenvironment on writing chemical patterns into spirothiopyran monolayers over large areas in a single step with light. Surfaces functionalized with photoresponsive spirothiopyran are fabricated by chemically modifying amine-terminated monolayers. The merocyanine isomer selectively participates in a thiol-Michael addition reaction with maleimide-functionalized molecules, rendering these surfaces ideal for fast, mask-less direct writing. The local microenvironment of spirothiopyran is found to strongly influence the kinetics of photoswitching. The quantum yield of ring opening is found to be 17 times faster for spirothiopyran surrounded by a locally charged environment rich in guanidinium diluent molecules as compared to a closed-packed monolayer without diluents. Hydrophilic environments are also found to improve the kinetics of ring closing. Optimization of the diluent concentration leads to dramatic improvements in both contrast and yield of direct writing. This enables the...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    8
    Citations
    NaN
    KQI
    []