Persistence of flare-driven atmospheric chemistry on rocky habitable zone worlds

2020 
Low-mass stars show evidence of vigorous magnetic activity in the form of large flares and coronal mass ejections. Such space weather events may have important ramifications for the habitability and observational fingerprints of exoplanetary atmospheres. Here, using a suite of three-dimensional coupled chemistry–climate model simulations, we explore effects of time-dependent stellar activity on rocky planet atmospheres orbiting G, K and M dwarf stars. We employ observed data from the MUSCLES campaign and the Transiting Exoplanet Survey Satellite and test a range of rotation period, magnetic field strength and flare frequency assumptions. We find that recurring flares drive the atmospheres of planets around K and M dwarfs into chemical equilibria that substantially deviate from their pre-flare regimes, whereas the atmospheres of G dwarf planets quickly return to their baseline states. Interestingly, simulated O2-poor and O2-rich atmospheres experiencing flares produce similar mesospheric nitric oxide abundances, suggesting that stellar flares can highlight otherwise undetectable chemical species. Applying a radiative transfer model to our chemistry–climate model results, we find that flare-driven transmission features of bio-indicating chemical species, such as nitrogen dioxide, nitrous oxide and nitric acid, show particular promise for detection by future instruments. Flares from K and M dwarf stars drive change, and sustain an altered atmospheric chemistry, in orbiting rocky planets, according to a suite of three-dimensional climate models. The atmospheres of rocky planets around G dwarfs rapidly return to their pre-flare states, however.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    128
    References
    16
    Citations
    NaN
    KQI
    []