Extended pairwise local alignment of wild card DNA/RNA sequences using dynamic programming
2015
Optimal string alignment is used to discover evolutionary relationships or mutations in DNA/RNA or protein sequences. Errors, missing parts or uncertainty in such a sequence can be covered with wild cards, so-called wild bases. This makes an alignment possible even when the data are corrupted or incomplete. The extended pairwise local alignment of wild card DNA/RNA sequences requires additional calculations in the dynamic programming algorithm and necessitates a subsequent best- and worst-case analysis for the wild card positions. In this paper, we propose an algorithm which solves the problem of input data wild cards, offers a highly flexible set of parameters and displays a detailed alignment output and a compact representation of the mutated positions of the alignment. An implementation of the algorithm can be obtained at https://github.com/sysbio-bioinf/swat+ and http://sysbio.uni-ulm.de/?Software:Swat+.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
35
References
4
Citations
NaN
KQI