Direct synthesis of fullerene-intercalated porous carbon nanofibers by chemical vapor deposition

2012 
Abstract Hybrid structures combining fullerenes and carbon nanotubes have exhibited exciting properties. However, the low efficiency and complex process of such assembly restrict their practical applications. We report a single-step procedure to synthesize the fullerene-intercalated (including endohedral metallofullerene (Y@Cn)) porous carbon nanofibers (pCNFs) by chemical vapor deposition (CVD) using a Fe/Y catalyst on a copper substrate. Fullerenes were simultaneously synthesized with the pCNF growth during the CVD process. Instead of attaching them on the surface of the CNFs, the fullerenes were inserted in the graphitic interlayer spacing, inducing micro- and mesopores in CNFs. The growth mechanism of the fullerene-intercalated pCNFs was discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    8
    Citations
    NaN
    KQI
    []