Fully Phosphor-Converted LEDs with Lumiramic™ Phosphor Technology

2010 
Fully phosphor-converted LEDs (FpcLeds) with saturated emission have been realized in the green and amber spectral region. With the Lumiramic™ phosphor technology it is possible to achieve high package efficiency with minimum transmission of blue light from the primary LED source. This is done by keeping the scattering properties of the phosphor layer low while the phosphor thickness is chosen to fully convert all blue LED emission. It is shown that this can be done not only for optically isotropic Lumiramic materials like garnets, but also for oxonitridosilicate materials like the green emitting Europium doped SrSi 2 O 2 N 2 , crystallizing in a triclinic lattice with three optical axes. The scattering power of the Lumiramic can be decreased to acceptable levels by increasing the size of the crystallites in the densely sintered ceramics. Light propagation is found to be described well with Mie scattering of mono-sized SrSi 2 O 2 N 2 spheres with refraction index differing by 0.07 to the refractive index of a SrSi 2 O 2 N 2 matrix material. Using this technology, the green-yellow gap of visible light emitting LEDs can be bridged and color tunable lamps with the efficiency and flux of today's white phosphor-converted LEDs become feasible.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    8
    Citations
    NaN
    KQI
    []