The simulated N deposition accelerates net N mineralization and nitrification in a tropical forest soil

2019 
Abstract. Elevated nitrogen (N) deposition affects soil N transformations in the N-rich soil of tropical forests. However, the change in soil functional microorganisms responsible for soil N cycling remains largely unknown. Here, we investigated the variation in soil inorganic N content, net N mineralization ( Rm ), net nitrification ( Rn ), inorganic N leaching ( Rl ), N2O efflux and N-related functional gene abundance in a tropical forest soil over a 2-year period with four levels of N addition. The responses of soil net N transformations (in situ Rm and Rn ) and Rl to N additions were negligible during the first year of N inputs. The Rm , Rn , and Rl increased with the medium nitrogen (MN) and high nitrogen (HN) treatments relative to the control treatments in the second year of N additions. Furthermore, the Rm , Rn , and Rl were higher in the wet season than in the dry season. The Rm and Rn were mainly associated with the N addition-induced lower C:N ratio in the dry season but with higher microbial biomass in the wet season. Throughout the study period, high N additions increased the annual N2O emissions by 78 %. Overall, N additions significantly facilitated Rm , Rn , Rl and N2O emission. In addition, the MN and HN treatments increased the ammonia-oxidizing archaea (AOA) abundance by 17.3 % and 7.5 %, respectively. Meanwhile, the HN addition significantly increased the abundance of nirK denitrifiers but significantly decreased the abundance of ammonia-oxidizing bacteria (AOB) and nosZ-containing N2O reducers. To some extent, the variation in functional gene abundance was related to the corresponding N-transformation processes. Partial least squares path modelling (PLS-PM) indicated that inorganic N contents had significantly negative direct effects on the abundances of N-related functional genes in the wet season, implying that chronic N deposition would have a negative effect on the N-cycling-related microbes and the function of N transformation. Our results provide evidence that elevated N deposition may impose consistent stimulatory effects on soil N-transformation rates but differentiated impacts on related microbial functional genes. Long-term experimentation or observations are needed to decipher the interrelations between the rate of soil N-transformation processes and the abundance or expression of related functional genes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    4
    Citations
    NaN
    KQI
    []