Assembling Shape-persistent High-Order Sierpiński Triangular Fractals

2020 
Summary Fractals are a series of intricate patterns with aesthetic, mathematic, and philosophic significance. The Sierpinski triangles have been known for more than one hundred years, but only recently discrete shape-persistent low-generation (mainly ST-1) fractal supramolecules have been realized. Herein, we report a retro-assembly pathway to the nanometer-scale, supra-macromolecular second-generation Sierpinski triangle and its third-generation saturated counterpart (Pascal's triangle). These gigantic triangular assemblies are unambiguously confirmed by NMR, DOSY, ESI-MS, TWIM-MS, TEM, and AFM analyses. Notably, the dense-packed counterions of these discrete triangular architectures could further form supramolecular hydro-gels in water. This work not only provides a fundamental chemical pathway to explore various giant supramolecular constructs and further overcome the synthetic limitation of complicated molecular fractals, but also presents a new type of supramolecular hydro-gels with potential in controlled release applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    5
    Citations
    NaN
    KQI
    []