Bioinspired composites from cross-linked galactoglucomannan and microfibrillated cellulose: Thermal, mechanical and oxygen barrier properties.

2016 
In this study, new wood-inspired films were developed from microfibrillated cellulose and galactoglucomannan-lignin networks isolated from chemothermomechanical pulping side streams and cross-linked using laccase enzymes. To the best of our knowledge, this is the first time that cross-linked galactoglucomannan-lignin networks have been used for the potential development of composite films inspired by woody-cell wall formation. Their capability as polymeric matrices was assessed based on thermal, structural, mechanical and oxygen permeability analyses. The addition of different amounts of microfibrillated cellulose as a reinforcing agent and glycerol as a plasticizer on the film performances was evaluated. In general, an increase in microfibrillated cellulose resulted in a film with better thermal, mechanical and oxygen barrier performance. However, the presence of glycerol decreased the thermal stability, stiffness and oxygen barrier properties of the films but improved their elongation. Therefore, depending on the application, the film properties can be tailored by adjusting the amounts of reinforcing agent and plasticizer in the film formulation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    23
    Citations
    NaN
    KQI
    []