The contribution of afferent information on position and velocity to the control of slow and fast human forearm movements

1987 
We applied vibration at various rates to the biceps tendon of a passive, restrained arm in normal human subjects and measured its effect on the perception of forearm position and the perception of forearm velocity. The disturbances of limb position perception and limb velocity perception depended on the vibration rate in distinctly different ways. We thereupon applied vibration at various rates to the biceps tendon during the performances of non-visually-guided slow and fast forearm movements. The vibration-rate-dependence of the disturbance of slow movements matched the vibration-ratedependence of the disturbance of limb position perception. The vibration-rate-dependence of the disturbance of fast limb movements matched the vibration-rate-dependence of the disturbance of limb velocity perception. It is concluded that afferent position information is dominant in the control of slow movements, whereas mainly afferent velocity information is used in the control of fast movements.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    102
    Citations
    NaN
    KQI
    []