Neutron spectroscopy study of single-walled carbon nanotubes hydrogenated under high pressure

2007 
Single-walled carbon nanotubes (SWNT) were loaded with 5.2 wt% hydrogen at a hydrogen pressure of 3 GPa and T = 620 K, quenched to 80 K and studied at ambient pressure and 15 K by inelastic neutron scattering (INS) in the range of energy transfers 3–400 meV. An analysis of the measured INS spectra showed that the quenched SWNT & H sample contained hydrogen in two different forms, as H atoms covalently bound to the carbon atoms (∼4.7 wt%) and as H2 molecules (∼0.5 wt%) exhibiting nearly free rotational behavior. Annealing the sample in vacuum at 332 K removed about 65% of the H2 molecules and annealing at 623 K removed all of them. This demonstrates that H2 molecules were kept in this sample more tightly than in earlier studied SWNT & H samples that were hydrogenated at lower pressures and temperatures and lost all molecular hydrogen on heating in vacuum to room temperature.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    4
    Citations
    NaN
    KQI
    []