Hatching asynchrony that maintains egg viability also reduces brood reduction in a subtropical bird

2014 
In birds, hatching failure is pervasive and incurs an energetic and reproductive cost to breeding individuals. The egg viability hypothesis posits that exposure to warm temperatures prior to incubation decreases viability of early laid eggs and predicts that females in warm environments minimize hatching failure by beginning incubation earlier in the laying period, laying smaller clutches, or both. However, beginning incubation prior to clutch completion may incur a cost by increasing hatching asynchrony and possibly brood reduction. We examined whether Florida scrub jays (Aphelocoma coerulescens) began incubation earlier relative to clutch completion when laying larger clutches or when ambient temperatures increased, and whether variation in incubation onset influenced subsequent patterns of hatching asynchrony and brood reduction. We compared these patterns between a suburban and wildland site because site-specific differences in hatching failure match a priori predictions of the egg viability hypothesis. Females at both sites began incubation earlier relative to clutch completion when laying larger clutches and as ambient temperatures increased. Incubation onset was correlated with patterns of hatching asynchrony at both sites; however, brood reduction increased only in the suburbs, where nestling food is limiting, and only during the late nestling period. Hatching asynchrony may be an unintended consequence of beginning incubation early to minimize hatching failure of early laid eggs. Food limitation in the suburbs appears to result in increased brood reduction in large clutches that hatch asynchronously. Therefore, site-specific rates of brood reduction may be a consequence of asynchronous hatching patterns that result from parental effort to minimize hatching failure in first-laid eggs. This illustrates how anthropogenic change, such as urbanization, can lead to loss of fitness when animals use behavioral strategies intended to maximize fitness in natural landscapes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    3
    Citations
    NaN
    KQI
    []