Limits to Thermal-Piezoresistive Cooling in Silicon Micromechanical Resonators

2020 
We study thermal-piezoresistive cooling in silicon micromechanical resonators at large currents and high temperatures. Crossing a thermal transition region corresponds to a steep reduction in resonance frequency, an abrupt plateauing in the effective quality factor, and a large increase in thermomechanical fluctuations. Comparing measurements with simulations suggests that the second-order temperature coefficients of elasticity of doped silicon are not sufficient to capture the drop in resonance frequency at large currents. Overall, our results show that there are clear thermal limits to cooling a resonant mode using current-controlled thermal-piezoresistive feedback in silicon. [2020-0205]
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    0
    Citations
    NaN
    KQI
    []