Sparse Antenna and Pulse Placement for Colocated MIMO Radar.

2018 
Multiple input multiple output (MIMO) radar is known for its superiority over conventional radar due to its antenna and waveform diversity. Although higher angular resolution, improved parameter identifiability, and better target detection are achieved, the hardware costs (due to multiple transmitters and multiple receivers) and high energy consumption (multiple pulses) limit the usage of MIMO radars in large scale networks. On one hand, higher angle and velocity estimation accuracy is required, but on the other hand, a lower number of antennas/pulses is desirable. To achieve such a compromise, in this work, the Cram'er-Rao lower bound (CRLB) for the angle and velocity estimator is employed as a performance metric to design the antenna and pulse placement. It is shown that the CRLB derived for two targets is a more appropriate criterion in comparison with the single-target CRLB since the two-target CRLB takes into account both the mainlobe width and sidelobe level of the ambiguity function. In this paper, several algorithms for antenna and pulse selection based on convex and submodular optimization are proposed. Numerical experiments are provided to illustrate the developed theory.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []