Mutual Adaptation in a Prosthetics Application

2004 
Prosthetic care for handicapped persons requires new and reliable robotics technology. In this paper, developmental approaches for prosthetic applications are described. In addition, the challenges associated with the adaptation and control of materials for human hand prosthetics are presented. The new technology of robotics for prosthetics provides many possibilities for the detection of human intention. This is particularly true with the use of electromyogram (EMG) and mechanical actuation with multiple degrees of freedom. The EMG signal is a nonlinear wave, and has time dependency and big individual differences. The EMG signal is a nonlinear wave that has time dependency and significant differences from one individual to another. A method for how an individual adapts to the processing of EMG signals is being studied to determine and classify a human’s intention to move. A prosthetic hand with 11 degrees of freedom (DOF) was developed for this study. In order to make it light-weight, an adaptive joint mechanism was applied. The application results demonstrate the challenges for human adaptation. The f-MRI data show a process of replacement from a phantom limb image to a prosthetic hand image.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    40
    Citations
    NaN
    KQI
    []