Determination of molecular stopping cross section of 12C, 16O, 28Si, 35Cl, 58Ni, 79Br, and 127I in silicon nitride.

2015 
Abstract Silicon nitride is a technologically important material in a range of applications due to a combination of important properties. Ion beam analysis techniques, and in particular, heavy ion elastic recoil detection analysis can be used to determine the stoichiometry of silicon nitride films, which often deviates from the ideal Si 3 N 4 , as well as the content of impurities such as hydrogen, even in the presence of other materials or in a matrix containing heavier elements. Accurate quantification of IBA results depends on the basic data used in the data analysis. Quantitative depth profiling relies on the knowledge of the stopping power cross sections of the materials studied for the ions involved, which in the case of HI-ERDA is both the primary beam, and the recoiled species. We measured the stopping cross section of 12 C, 16 O, 28 Si, 35 Cl, 58 Ni, 79 Br, and 127 I in a well-characterised silicon nitride membrane. The measurements were made by independent groups utilising different experimental setups and methods. In some cases there is extensive overlap of the energy range in different experiments, allowing a comparison of the different results. The four independent data sets reported in this work are in excellent agreement with each other, in the cases where similar energy ranges were measured. On the other hand, the data are in most cases higher than calculations made with the interpolative schemes SRIM and MSTAR together with the Bragg rule. Better agreement is found with MSTAR in some of the cases studied. This work is a significant extension of the heavy ion stopping power data base for silicon nitride.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    3
    Citations
    NaN
    KQI
    []