Influence of Self-Assembling Redox Mediators on Charge Transfer at Hydrophobic Electrodes

2015 
We report an investigation of the influence of reversible self-assembly of amphiphilic redox-mediators on interfacial charge transfer at chemically functionalized electrodes. Specifically, we employed (11-ferrocenylundecyl)-trimethylammonium bromide (FTMA) as a model self-assembling redox mediator and alkanethiol-modified gold films as hydrophobic electrodes. By performing cyclic voltammetry (CV, 10 mV/s) in aqueous solutions containing FTMA above its critical micellar concentration (CMC), we measured anodic (Ia) and cathodic (Ic) peak current densities of 18 ± 3 and 1.1 ± 0.1 μA/cm2, respectively, revealing substantial current rectification (Ia/Ic= 17) at the hydrophobic electrodes. In contrast, hydroxymethyl ferrocene (a non-self-assembling redox mediator) at hydrophobic electrodes and FTMA at bare gold electrodes, yielded relatively low levels of rectification (Ia/Ic= 1.7 and 2.3, respectively). Scan-rate-dependent measurements revealed Ia of FTMA to arise largely from the diffusion of FTMA from bulk s...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    6
    Citations
    NaN
    KQI
    []