Conceptual Design and Dynamics Testing and Modeling of a Mars Tumbleweed Rover

2005 
The NASA Langley Research Center has been developing a novel concept for a Mars planetary rover called the Mars Tumbleweed. This concept utilizes the wind to propel the rover along the Mars surface, bringing it the potential to cover vast distances not possible with current Mars rover technology. This vehicle, in its deployed configuration, must be large and lightweight to provide the ratio of drag force to rolling resistance necessary to initiate motion from rest on the Mars surface. One Tumbleweed design concept that satisfies these considerations is called the Eggbeater-Dandelion. This paper describes the basic design considerations and a proposed dynamics model of the concept for use in simulation studies. It includes a summary of rolling/bouncing dynamics tests that used videogrammetry to better understand, characterize, and validate the dynamics model assumptions, especially the effective rolling resistance in bouncing/rolling dynamic conditions. The dynamics test used cameras to capture the motion of 32 targets affixed to a test article s outer structure. Proper placement of the cameras and alignment of their respective fields of view provided adequate image resolution of multiple targets along the trajectory as the test article proceeded down the ramp. Image processing of the frames from multiple cameras was used to determine the target positions. Position data from a set of these test runs was compared with results of a three dimensional, flexible dynamics model. Model input parameters were adjusted to match the test data for runs conducted. This process presented herein provided the means to characterize the dynamics and validate the simulation of the Eggbeater-Dandelion concept. The simulation model was used to demonstrate full scale Tumbleweed motion from a stationary condition on a flat-sloped terrain using representative Mars environment parameters.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    9
    Citations
    NaN
    KQI
    []