Complex magnetic phases in polar tetragonal intermetallic NdCoGe$_3$

2020 
Polar materials can host a variety of topologically significant magnetic phases, which often emerge from a modulated magnetic ground state. Relatively few noncentrosymmetric tetragonal materials have been shown to host topological spin textures and new candidate materials are necessary to expand the current theoretical models. This manuscript reports on the anisotropic magnetism in the polar, tetragonal material NdCoGe$_3$ via thermodynamic and neutron diffraction measurements. The previously reported $H$-$T$ phase diagram is updated to include several additional phases, which exist for both $H$ = 0 and with an applied field H$\perp$ c. Neutron diffraction data reveal that the magnetic structures below $T_{N1}$ = 3.70 K and $T_{N2}$ = 3.50 K are incommensurate, with a ground state magnetic order that is incommensurate in all directions with the propagation vector $\vec{k}$ = (0.494, 0.0044, 0.385) at 1.8 K. A unique magnetic structure solution is not achievable, but the possible single and multi-$\vec{k}$ spin models are discussed. These results demonstrate that NdCoGe3 hosts complicated magnetic order derived from modulated magnetic moments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    0
    Citations
    NaN
    KQI
    []