Two-Step Thermochemical Process for Adding Value to Used Railroad Wood Ties and Reducing Environmental Impacts

2017 
A two-step thermochemical process combining a thermal desorption at 250–300 °C and a pyrolysis at 500 °C of used creosote-treated wooden railroad ties was carried out to recover preservative and produce a high quality bio-oil and biochar. Under optimal temperature between 280 and 300 °C, high preservative removal efficiency (70–74%) was achieved with a high proportion of polycyclic aromatic hydrocarbons (PAHs, 80–82%) and a large portion of the original wood mass (67–70%) was retained. This thermally treated biomass had higher heating value (HHV; 19.9–20 MJ/kg) than the starting material. The physical properties of the preservative, such as viscosity and density, and its toxic threshold against a common decay basidiomycete fungus were similar to those of commercially available P2-creosote. Pyrolysis of the thermally treated ties produced bio-oils with lower water content and total acid numbers, and a higher amount of lignin-derived compounds than that of untreated ties. Biochars derived from the thermally...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    5
    Citations
    NaN
    KQI
    []