Valency control in MoO3−δ nanoparticles generated by pulsed laser liquid solid interaction

2012 
The possibility of synthesizing binary oxides nanoparticles in a nano-scaled form by laser liquid solid interaction using a NdYAG “1.064 μm” as an irradiating laser source is reported. The case of MoO3−δ is emphasized. Furthermore, it is demonstrated that the Mo–O electronic valence can be controlled through the coupling effects of oxygen enriched nature of the used coating liquid layer, namely pure H2O or H2O2 and the laser beam fluence. Dark blue hydrated molybdic pentoxide Mo2O5·xH2O and yellow molybdenum trioxide MoO3 nano-suspensions were reproducibly synthesized with hydrogen peroxide and water, respectively, at a relatively high ablation rate. The average size of the molybdenum trioxide nanoparticles was about ~8 nm, slightly larger than the molybdic pentoxide ones “ ~6.2 nm”.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    25
    Citations
    NaN
    KQI
    []