Humidity mediated performance and material properties of orb weaving spider adhesive droplets.

2021 
Abstract Capture thread glue droplets retain insects that strike an orb web and are key to the success of over 4,600 described spider species. Each droplet is a self-assembling adhesive system whose emergent biomechanical properties are centered on its viscoelastic, protein core. This bioadhesive is dependent on its surrounding hygroscopic aqueous layer for hydration and chemical conditioning. Consequently, a droplet's water content and adhesive performance track environmental humidity. We tested the hypothesis that natural selection has tuned a droplet's adhesive performance and material properties to a species’ foraging humidity. At 55% relative humidity (RH) the adhesive properties of 12 species ranged from that of PEG-based hydrogels to that of silicone rubber, exhibiting a 1088-fold inter-specific difference in stiffness (0.02-21.76 MPa) and a 147-fold difference in toughness (0.14-20.51 MJ/m3). When tested over a 70% RH range, droplet extension lengths per protein core volume peaked at lower humidities in species from exposed, low humidity habitats, and at higher humidities in nocturnal species and those found in humid habitats. However, at the RH's where these species’ maximum extension per protein volume indices were observed, the stiffness of most species’ adhesive did not differ, documenting that selection has tuned elastic modulus by adjusting droplet hygroscopicity. This inverse relationship between droplet hygroscopicity and a species’ foraging humidity ensures optimal adhesive stiffness. By characterizing the humidity responsiveness and properties of orb spider glue droplets, our study also profiles the range of its biomimetic potential. Statement of significance Over 4,600 described species of orb weaving spider rely on tiny glue droplets in their webs to retain insect that the web intercepts. The aqueous layer that covers each droplet's core allows this adhesive to remain pliable and to stretch as an insect struggles to escape. The aqueous solution also attracts water from the air, causing the glue droplet's performance to change with humidity. By characterizing the droplet extensions and adhesive material properties of twelve species at relative humidities between of 20 and 90%, this study examined how this unique adhesive system responds to its environment and how it is tuned to the humidity of a species’ habitat.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    0
    Citations
    NaN
    KQI
    []