Improvement of mesh recolonization in abdominal wall reconstruction with adipose vs. bone marrow mesenchymal stem cells in a rodent model

2017 
Abstract Background Reconstruction of muscle defects remains a challenge. Our work assessed the potential of an engineered construct made of a human acellular collagen matrix (HACM) seeded with porcine mesenchymal stem cells (MSCs) to reconstruct abdominal wall muscle defects in a rodent model. Methods This study compared 2 sources of MSCs (bone-marrow, BMSCs, and adipose, ASCs) in vitro and in vivo for parietal defect reconstruction. Cellular viability and growth factor release (VEGF, FGF-Beta, HGF, IGF-1, TGF-Beta) were investigated under normoxic/hypoxic culture conditions. Processed and recellularized HACMs were mechanically assessed. The construct was tested in vivo in full thickness abdominal wall defect treated with HACM alone vs. HACM+ASCs or BMSCs (n=14). Tissue remodeling was studied at day 30 for neo-angiogenesis and muscular reconstruction. Results A significantly lower secretion of IGF was observed with ASCs vs. BMSCs under hypoxic conditions (−97.6%, p Conclusion A composite graft made of an HACM seeded with ASCs can improve muscle repair by specific growth factor release in hypoxic conditions and by in vivo remodeling (neo-angiogenesis/graft integration) while maintaining mechanical properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    8
    Citations
    NaN
    KQI
    []