Supercritical-pressure, light-water-cooled reactors for economical nuclear power plants

1998 
Design studies of supercritical-pressure light-water-cooled reactors (SCLWRs) have been carried out to pursue drastic improvement of the economy of nuclear power generation. The core is cooled by supercritical water which is superheated without the phase change. The cooling system is a once-through type; the whole core flow is driven by the feedwater pumps and is directly led to the turbine. No recirculation line is necessary. Besides, steam separators and dryers are not needed. Water rods are used to enhance the moderation and to increase the flow velocity around the fuel rods. The radial peaking factor is satisfactorily reduced by controlling uranium enrichment and gadolinia concentration as well as water rods. Flattening of the radial power distribution is important to enhance the thermal efficiency. This can be achieved by the coolant density feedback and the out-in refueling pattern. Orificing is also effective to enhance the thermal efficiency. The thermal efficiency is above 40% with stainless steel cladding. Plant control system and safety system are also designed. The core flow should be directly maintained due to the once-through direct cycle. Plant behaviors of large break LOCAs and loss of offsite power are analyzed. Safety criteria are satisfied in both cases. The feasibility of SCLWR is shown.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    19
    Citations
    NaN
    KQI
    []