Bmmp influences wing shape by regulating anterior-posterior and proximal-distal axis development

2021 
Insect wings are subject to strong selective pressure, resulting in the evolution of remarkably diverse wing shapes that largely determine flight capacity. However, the genetic basis and regulatory mechanisms underlying wing shape development are not well understood. The silkworm Bombyx mori micropterous ( mp ) mutant exhibits shortened wing length and enlarged vein spacings , albeit without changes in total wing area. Thus, the mp mutant comprises a valuable genetic resource for studying wing shape development. In this study, we used molecular mapping to identify the gene responsible for the mp phenotype and designated it Bmmp . Phenotype-causing mutations were identified as indels and single nucleotide polymorphisms in non-coding regions. These mutations resulted in decreased Bmmp mRNA levels and changes in transcript isoform composition. Bmmp null mutants were generated by CRISPR/Cas9 and exhibited significantly smaller wings. By examining the expression of genes critical to wing development in wildtype and Bmmp null mutants, we found that Bm mp exerts its function by coordinately modulating anterior-posterior and proximal-distal axis development. We also studied a Drosophila mp mutant and found that Bmmp is functionally conserved in Drosophila . The Drosophila mp mutant strain exhibits curly wings of reduced size and a complete loss of flight capacity. Our results increase our understanding of the mechanisms underpinning insect wing development and reveal potential targets for pest control.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []