Functions For OsMADS2 And OsMADS1 As Master Regulators Of Gene Expression During Rice Floret Meristem Specification And Organ Development

2009 
Plant reproductive development begins when vegetative shoot apical meristems change their fate to inflorescence meristems which develop floral meristems on the flanks. This process of meristem fate change and organ development involves regulated activation and/or repression of many cell fate determining factors that execute down-stream gene expression cascades. Flowers are formed when floral organs are specified on the floral meristem in four concentric whorls. In the model dicot plant Arabidopsis, the identity and pattern of floral organs is determined by combined actions of MADS-domain containing transcription factors of the classes A, B, C, D and E. Rice florets are produced on a compact higher order branch of the inflorescence and have morphologically distinct non-reproductive organs that are positioned peripheral to the male and female reproductive organs. These unique outer organs are the lemma and palea that create a closed floret internal to which are a pair of lodicules that are asymmetrically positioned fleshy and reduced petal-like organs. The unique morphology of these rice floret organs pose intriguing questions on how evolutionary conserved floral meristem specifying and organ fate determining factors bring about their distinct developmental functions in rice. We have studied the functions for two rice MADS-box proteins, OsMADS2 and OsMADS1, to understand their role as master regulators of gene expression during rice floret meristem specification and organ development. OsMADS2; a transcriptional regulator of genes expression required for lodicule development Arabidopsis B-function genes AP3 and PI are stably expressed in the whorl 2 and 3 organ primordia and they together with other MADS-factors (Class A+E or C+E) regulate the differentiation of petals and stamens (Jack et al, 1992; Goto and Meyerowitz, 1994). Rice has a single AP3 ortholog, SPW1 (OsMADS16) but has duplicated PI-like genes, OsMADS2 and OsMADS4. Prior studies in our lab on one of these rice PI-like genes OsMADS2 showed that it is needed for lodicule development but is dispensable for stamen specification (Kang et al., 1998; Prasad and Vijayraghavan, 2003). Functional divergence between OsMADS2 and OsMADS4 may arise from protein divergence or from differences in their expression patterns within lodicule and stamen whorls. In this study, we have examined the dynamic expression pattern of both rice PI-like genes and have examined the likelihood of their functional redundancy for lodicule development. We show OsMADS2 transcripts occur at high levels in developing lodicules and transcripts are at reduced levels in stamens. In fully differentiated lodicules, OsMADS2 transcripts are more abundant in the distal and peripheral regions of lodicules, which are the tissues that are severely affected in OsMADS2 knock-down florets (Prasad and Vijayraghavan, 2003). The onset of OsMADS4 expression is in very young floret meristems before organ primordia emergence and this is expressed before OsMADS2. In florets undergoing organogenesis, high level…
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []