Measuring diffusion limitation with a perfusion-limited gas--hyperpolarized 129Xe gas-transfer spectroscopy in patients with idiopathic pulmonary fibrosis.

2014 
Although xenon is classically taught to be a “perfusion-limited” gas, 129Xe in its hyperpolarized (HP) form, when detected by magnetic resonance (MR), can probe diffusion limitation. Inhaled HP 129Xe diffuses across the pulmonary blood-gas barrier, and, depending on its tissue environment, shifts its resonant frequency relative to the gas-phase reference (0 ppm) by 198 ppm in tissue/plasma barrier and 217 ppm in red blood cells (RBCs). In this work, we hypothesized that in patients with idiopathic pulmonary fibrosis (IPF), the ratio of 129Xe spectroscopic signal in the RBCs vs. barrier would diminish as diffusion-limitation delayed replenishment of 129Xe magnetization in RBCs. To test this hypothesis, 129Xe spectra were acquired in 6 IPF subjects as well as 11 healthy volunteers to establish a normal range. The RBC:barrier ratio was 0.55 ± 0.13 in healthy volunteers but was 3.3-fold lower in IPF subjects (0.16 ± 0.03, P = 0.0002). This was caused by a 52% reduction in the RBC signal (P = 0.02) and a 58% increase in the barrier signal (P = 0.01). Furthermore, the RBC:barrier ratio strongly correlated with lung diffusing capacity for carbon monoxide (DLCO) (r = 0.89, P < 0.0001). It exhibited a moderate interscan variability (8.25%), and in healthy volunteers it decreased with greater lung inflation (r = −0.78, P = 0.005). This spectroscopic technique provides a noninvasive, global probe of diffusion limitation and gas-transfer impairment and forms the basis for developing 3D MR imaging of gas exchange.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    59
    Citations
    NaN
    KQI
    []