Generation of High-Power Sub-THz Waves in Magnetized Turbulent Electron Beam Plasmas

2014 
Sub-THz radiation can be generated by conversion of plasma waves into electromagnetic (EM) radiation in a plasma with strong Langmuir (LT) turbulence produced via a two-stream instability of a high current relativistic electron beam (REB). Nonlinear plasmon-plasmon merging results in the generation of photons nearby the 2nd harmonic of the plasma frequency 2ω p (“2ω p -process”). For plasma densities of 1014 − 1015 cm−3, these frequencies are in the range of sub-THz waves at 370–570 GHz. The specific power density of sub-THz-wave emission from plasmas in the multi-mirror magnetic trap GOL-3 (at BINP) during injection of a 10-μs-REB with a current density of about 1 kA/cm2 at plasma densities n e ≈ 5∙1014 cm−3, electron temperatures T e ≈ 1.5 keV and magnetic induction B ≈ 4 T was measured to be approx. 1 kW/cm3 in the frequency band around 300 GHz. In the case of a weakly relativistic 100-μs-electron beam (90 keV) with 250 A/cm2 the corresponding results are 700 W/cm3 around 90 GHz with an efficiency of 1–2 % at n e ≈ 3∙1013 cm−3 (total power ≈ 30 kW). Theoretical investigations show that at a density of n e ≈ 3∙1015 cm−3 and a turbulence level of 5 % the generated sub-THz power can reach ≈ 1 MW/cm3.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    13
    References
    26
    Citations
    NaN
    KQI
    []