Directional-TV Algorithm for Image Reconstruction from Limited-Angular-Range Data

2021 
Abstract Investigation of image reconstruction from data collected over a limited-angular range in X-ray CT remains a topic of active research because it may yield insight into the development of imaging workflow of practical significance. This reconstruction problem is well-known to be challenging, however, because it is highly ill-conditioned. In the work, we investigate optimization-based image reconstruction from data acquired over a limited-angular range that is considerably smaller than the angular range in short-scan CT. We first formulate the reconstruction problem as a convex optimization program with directional total-variation (TV) constraints applied to the image, and then develop an iterative algorithm, referred to as the directional-TV (DTV) algorithm for image reconstruction through solving the optimization program. We use the DTV algorithm to reconstruct images from data collected over a variety of limited-angular ranges for breast and bar phantoms of clinical- and industrial-application relevance. The study demonstrates that the DTV algorithm accurately recovers the phantoms from data generated over a significantly reduced angular range, and that it considerably diminishes artifacts observed otherwise in reconstructions of existing algorithms. We have also obtained empirical conditions on minimal-angular ranges sufficient for numerically accurate image reconstruction with the DTV algorithm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    6
    Citations
    NaN
    KQI
    []