Model Predictive Control for Regular Linear Systems.

2018 
The present work extends known finite-dimensional constrained optimal control realizations to the realm of well-posed regular linear infinite-dimensional systems modelled by partial differential equations. The structure-preserving Cayley-Tustin transformation is utilized to approximate the continuous-time system by a discrete-time model representation without using any spatial discretization or model reduction. The discrete-time model is utilized in the design of model predictive controller accounting for optimality, stabilization, and input and output/state constraints in an explicit way. The proposed model predictive controller is dual-mode in the sense that predictive controller steers the state to a set where exponentially stabilizing unconstrained feedback can be utilized without violating the constraints. The construction of the model predictive controller leads to a finite-dimensional constrained quadratic optimization problem easily solvable by standard numerical methods. Two representative examples of partial differential equations are considered.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    1
    Citations
    NaN
    KQI
    []