Ced-9 inhibits Al-induced programmed cell death and promotes Al tolerance in tobacco

2009 
Our previous data showed that apoptotic suppressors inhibit aluminum (Al)-induced programmed cell death (PCD) and promote Al tolerance in yeast cells, however, very little is known about the underlying mechanisms, especially in plants. Here, we show that the Caenorhabditis elegans apoptotic suppressor Ced-9, a Bcl-2 homologue, inhibited both the Al-induced PCD and Al-induced activity of caspase-like vacuolar processing enzyme (VPE), a crucial executioner of PCD, in tobacco. Furthermore, we show that Ced-9 significantly alleviated Al inhibition of root elongation, decreased Al accumulation in the root tip and greatly inhibited Al-induced gene expression in early response to Al, leading to enhancing the tolerance of tobacco plants to Al toxicity. Our data suggest that Ced-9 promotes Al tolerance in plants via inhibition of Al-induced PCD, indicating that conserved negative regulators of PCD are involved in integrated regulation of cell survival and Al-induced PCD by an unidentified mechanism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    31
    Citations
    NaN
    KQI
    []