A General Framework for Mining Massive Data Streams

2003 
In many domains, data now arrive faster than we are able to mine it. To avoid wasting these data, we must switch from the traditional “one-shot” data mining approach to systems that are able to mine continuous, high-volume, open-ended data streams as they arrive. In this article we identify some desiderata for such systems, and outline our framework for realizing them. A key property of our approach is that it minimizes the time required to build a model on a stream while guaranteeing (as long as the data are iid) that the model learned is effectively indistinguishable from the one that would be obtained using infinite data. Using this framework, we have successfully adapted several learning algorithms to massive data streams, including decision tree induction, Bayesian network learning, k-means clustering, and the EM algorithm for mixtures of Gaussians. These algorithms are able to process on the order of billions of examples per day using off-the-shelf hardware. Building on this, we are currently develo...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    143
    Citations
    NaN
    KQI
    []