Characterization of Pure Rutile Titania Nanoparticle Prepared by Feasible Method for Coatings and Visible Light-Driven Dye Removal Application

2021 
The pure phase of rutile titanium dioxide or titania (R-TiO2) was prepared by means of a strong acidic sol–gel process followed by treatment using a hydrothermal method. The as-prepared titania nanoparticles existed purely in the rutile phase instead of the mixed anatase phase of the respective titania (R-TiO2). The optimized reaction condition and precursor usage were the critical parameters for the formation of the particle size and uniform crystallinity of the rutile phase of TiO2 nanoparticle fabrication. XRD (X-ray diffraction), and Raman spectroscopic techniques were utilized to confirm the formation of the pure rutile phase of titania. SEM (scanning electron microscope) and TEM (Transmission electron microscope) images showed the cauliflower-like morphology of the as-prepared R-TiO2; reduced particle sizes of below 5 nm were observed and confirmed through high resolution images. The catalytic activity of the as-prepared R-TiO2 was tested under visible light irradiation for methylene blue dye degradation reactions. Dye degradation occurred very effectively, even at higher concentrations of methylene blue (MB), at reduced time intervals from 5 to 3 h of reaction time. The as-prepared rutile phase of pure titania nanoparticles was applied in a catalysis application for the purpose of inducing various types of organic dye degradation or catalytic transformation in the presence of visible light.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []