Exploring Temporal Intra-Urban Travel Patterns: An Online Car-Hailing Trajectory Data Perspective

2021 
Understanding intra-urban travel patterns is beneficial for urban planning and transportation management, among other fields. As an emerging travel mode, online car-hailing platforms provide massive and high-precision trajectory data, thus offering new opportunities for gaining insights into human mobility. This paper aims to explore temporal intra-urban travel patterns by fitting the distributions of mobility metrics and leveraging the boxplot. The statistical characteristics of daily and hourly travel distance are relatively stable, while those of travel time and speed have some fluctuations. More specifically, most residents travel between 2 and 10 km, with travel times ranging from 6.6 to 30 min, which is fairly consistent with our daily experience. Mainly attributed to travel cost, individuals seldom use online car-hailing for too short or long trips. It is worth mentioning that a weekly pattern can be found in all mobility metrics, in which the patterns of travel time and speed are more obvious than that of travel distance. In addition, since October has more rainy days than November, travel distances and travel times in October are higher than that in November, while the opposite is true for travel speed. This paper can provide a beneficial reference for understanding temporal human mobility patterns, and lays a solid foundation for future research.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    0
    Citations
    NaN
    KQI
    []