Step-emulsification in nanofluidic device

2014 
In this paper we present a comprehensive study of the step-emulsification process for high-throughput production of (sub-)$\mu$m-size monodisperse droplets. The microfluidic device combines a Hele-Shaw nanofluidic cell with a step-like outlet to a deep and wide reservoir. The proposed theory based on Hele-Shaw hydrodynamics provides the quasi-static shape of the free boundary between the disperse liquid phase engulfed by the co-flowing continuous phase prior to transition to oscillatory step-emulsification at low enough capillary number. At the transition the proposed theory anticipates a simple condition for critical capillary number as a function of the Hele-Shaw cell geometry. The transition threshold is in excellent agreement with experimental data. A simple closed-form expression for the size of the droplets generated in step-emulsification regime derived using simple geometric arguments also shows a very good agreement with the experimental results.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    1
    Citations
    NaN
    KQI
    []