Coupling two order parameters in a quantum gas

2017 
Controlling matter to simultaneously support multiple coupled properties is of fundamental and technological importance. For example, the simultaneous presence of magnetic and ferroelectric orders in multiferroic materials leads to enhanced functionalities. In high-temperature superconductors, intertwining between charge- and spin-order can form superconducting states at high transition temperatures. However, pinning down the microscopic mechanisms responsible for the simultaneous presence of different orders is difficult, making it hard to predict the phenomenology of a material or to experimentally modify its properties. Here we use a quantum gas to engineer an adjustable interaction at the microscopic level between two orders, and demonstrate scenarios of competition, coexistence and coupling between them. In the latter case, intriguingly, the presence of one order lowers the critical point of the other. Our system is realized by a Bose-Einstein condensate which can undergo self-organization phase transitions in two optical resonators, resulting in two distinct crystalline density orders. We characterize the intertwining between these orders by measuring the composite order parameter and the elementary excitations. We explain our results with a mean-field free energy model, which is derived from a microscopic Hamiltonian. Our system is ideally suited to explore properties of quantum tricritical points as recently realized in and can be extended to study the interplay of spin and density orders also as a function of temperature.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []