Mechanism of 6-Hydroxynicotinate 3-Monooxygenase, a Flavin-Dependent Decarboxylative Hydroxylase Involved in Bacterial Nicotinic Acid Degradation

2019 
6-Hydroxynicotinate 3-monooxygenase (NicC) is a Group A FAD-dependent monooxygenase that catalyzes the decarboxylative hydroxylation of 6-hydroxynicotinic acid (6-HNA) to 2,5-dihydroxypyridine (2,5-DHP) with concomitant oxidation of NADH in nicotinic acid degradation by aerobic bacteria. Two mechanisms for the decarboxylative hydroxylation half-reaction have been proposed [Hicks, K., et al. (2016) Biochemistry 55, 3432–3446]. Results with Bordetella bronchiseptica RB50 NicC here show that a homocyclic analogue of 6-HNA, 4-hydroxybenzoic acid (4-HBA), is decarboxylated and hydroxylated by NicC with a 420-fold lower catalytic efficiency than is 6-HNA. The 13(V/K), measured with wild-type NicC by isotope ratio mass spectrometry following the natural abundance of 13C in the CO2 product, is inverse for both 6-HNA (0.9989 ± 0.0002) and 4-HBA (0.9942 ± 0.0004) and becomes negligible (0.9999 ± 0.0004) for 5-chloro-6-HNA, an analogue that is 10-fold more catalytically efficient than 6-HNA. Covalently bound 6-HNA c...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    3
    Citations
    NaN
    KQI
    []