Fuel efficient model predictive control strategies for a group of connected vehicles incorporating vertical vibration

2017 
This paper presents a decentralized fuel efficient model predictive control (MPC) strategy for a group of connected vehicles incorporating vertical vibration. To capture the vehicle vibration dynamics, the dynamics of the suspension system is integrated with the longitudinal dynamics of the vehicle. Furthermore, a MPC framework with finite time horizon is formulated to calculate the optimal velocity profile that compromises fuel economy, mobility and ride comfort for every individual vehicle with the safety and physical constraints considered. In the MPC framework, the target velocity is calculated using signal phase and timing (SPAT) information to reduce the number of stoppage at red lights, and the vertical acceleration is calculated parallel to the calculation of the fuel consumption. The MPC optimal problem is solved with fast-MPC approach which enhances the computational efficiency via exploiting the structure of the control system and approximate methods. Simulation studies are conducted over different SPATs and connectivity penetration rates and the results validate the advantages of the proposed control architecture.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    3
    Citations
    NaN
    KQI
    []