Role of a Two-Component Signal Transduction System RspA1/A2 in Regulating the Biosynthesis of Salinomycin in Streptomyces albus.

2020 
The two-component system "AfsQ1/Q2" plays a crucial role to activate the production of antibiotics ACT, RED, and CDA through directly binding the promoters of pathway-specific activator genes actII-ORF4, redZ, and cdaR respectively when grown under glutamate-supplemented minimal medium in Streptomyces coelicolor. In this report, we demonstrated that the RspA1/A2 (a homologous protein of two-component system AfsQ1/Q2) plays a regulatory role in salinomycin biosynthesis in Streptomyces albus. Gene deletion and complementation experiments showed that the RspA1/A2 promoted salinomycin production but inhibited cell growth when cultured in YMG medium supplemented with 3% soybean oil. More importantly, RspA1/A2 strengthens salinomycin biosynthesis by directly affecting the transcription of the pathway-specific activator gene slnR. Meanwhile, RspA1/A2 plays a negative role in the regulation of nitrogen assimilation and urea decarboxylation by interacting with the promoters of genes gdhA, glnA, amtB, and SLNWT_1828/1829. Gene sigW is located downstream of rspA1/A2 and encodes an extracytoplasmic function sigma factor. Moreover, it negatively regulates the salinomycin biosynthesis and promotes cell growth, which antagonizes the function of RspA1/A2. In short, these useful findings are proved helpful to enrich the understanding of the regulatory pathways of antibiotic biosynthesis by an ECF σ factor-TCS signal transduction system in Streptomyces.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    1
    Citations
    NaN
    KQI
    []