Modeling Approach of an Air-Based Battery Thermal Management System for an Electric Vehicle

2021 
The battery thermal management system is one of the important systems of an electric vehicle with direct effects on its performance. In this regard, this paper proposes a mathematical model that increases the accuracy of data obtained by numerical analysis of the temperature inside battery packs. The activity of the design and development (as accurate as possible) of a battery pack leads to an increase in the life of the battery cells and of the energetic efficiency of the electric vehicle in the specific operating conditions of road traffic. The research methodology of the thermal phenomenon in the battery pack, presented by the authors, is based on an efficient co-simulation concept consisting of steady-state CFD simulations and transient 1D simulations using a new mathematical model for the thermal behavior of a lithium-ion (Li-ion) cylindrical battery and applied in a battery pack’s forced air cooling thermal management system. Comparing the obtained results, it was found that the use of the model provides more accurate calculations of the local thermal performance of the air cooling system, with a direct influence on optimizing its design and construction. It is also highlighted that using the proposed model for higher heat transfer coefficient values (increase in air flow), offers more accurate data compared to other models, with immediate benefits in the proper design and development of the battery’s thermal management system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []