Chemical mechanical glass polishing with cerium oxide: Effect of selected physico-chemical characteristics on polishing efficiency
2016
Abstract Cerium oxide with an excellent glass polishing efficiency was prepared by annealing carbonate or oxalate precursors. The temperature of calcination was identified as a critical parameter that governs the key properties, including the polishing efficiency, of the polishing powders; conversely, the time of calcination appears to be less important. Only the cerium oxides prepared at temperatures above 700 °C exhibited good glass polishing capabilities in terms of both the material removal rate and the quality of the polished surface; the maximum polishing efficiency was produced by the samples annealed at 1050 °C. Polishing powders were characterized using X-ray diffraction (XRD), advanced microscopic techniques (SEM, TEM), Brunauer–Emmett–Teller (BET) surface area, X-ray photoelectron spectroscopy (XPS) and other techniques. Detailed XRD and microscopic investigations revealed a strong correlation between the crystallinity of cerium oxide and its polishing efficiency, which is consistent with the mechanical effect of the polishing mechanism. However, XPS measurements suggest that the chemical characteristics, namely the presence of the Ce 3+ ions, also play an important role in glass polishing and planarization. Both mechanical and chemical contributions to the polishing process are influenced by the calcination temperature.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
41
References
35
Citations
NaN
KQI